home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Speccy ClassiX 1998
/
Speccy ClassiX 98.iso
/
amiga_system
/
the_aminet
/
dev
/
gcc
/
ixemulsrc.lha
/
ixemul-41.4
/
gnulib
/
libgcc2.c
< prev
next >
Wrap
C/C++ Source or Header
|
1995-05-27
|
30KB
|
1,386 lines
/* More subroutines needed by GCC output code on some machines. */
/* Compile this one with gcc. */
/* Copyright (C) 1989, 1992 Free Software Foundation, Inc.
This file is part of GNU CC.
GNU CC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GNU CC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GNU CC; see the file COPYING. If not, write to
the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
/* As a special exception, if you link this library with files
compiled with GCC to produce an executable, this does not cause
the resulting executable to be covered by the GNU General Public License.
This exception does not however invalidate any other reasons why
the executable file might be covered by the GNU General Public License. */
/* It is incorrect to include config.h here, because this file is being
compiled for the target, and hence definitions concerning only the host
do not apply. */
#if 0
#include "tm.h"
#include "gstddef.h"
#else
#include "types.h"
#include <stddef.h>
#endif
#include "kprintf.h"
/* Don't use `fancy_abort' here even if config.h says to use it. */
#ifdef abort
#undef abort
#endif
/* Need to undef this because LONG_TYPE_SIZE may rely upon GCC's
internal `target_flags' variable. */
#undef LONG_TYPE_SIZE
#define LONG_TYPE_SIZE (sizeof (long) * BITS_PER_UNIT)
#ifndef SItype
#define SItype long int
#endif
/* long long ints are pairs of long ints in the order determined by
WORDS_BIG_ENDIAN. */
#if WORDS_BIG_ENDIAN
struct longlong {long high, low;};
#else
struct longlong {long low, high;};
#endif
/* We need this union to unpack/pack longlongs, since we don't have
any arithmetic yet. Incoming long long parameters are stored
into the `ll' field, and the unpacked result is read from the struct
longlong. */
typedef union
{
struct longlong s;
long long ll;
} long_long;
#if defined (L_udivmoddi4) || defined (L_muldi3)
#include "longlong.h"
#endif /* udiv or mul */
extern long long __fixunssfdi (float a);
extern long long __fixunsdfdi (double a);
#if defined (L_negdi2) || defined (L_divdi3) || defined (L_moddi3)
#if defined (L_divdi3) || defined (L_moddi3)
static inline
#endif
long long
__negdi2 (u)
long long u;
{
long_long w;
long_long uu;
uu.ll = u;
w.s.low = -uu.s.low;
w.s.high = -uu.s.high - ((unsigned long) w.s.low > 0);
return w.ll;
}
#endif
#ifdef L_lshldi3
long long
__lshldi3 (u, b)
long long u;
int b;
{
long_long w;
long bm;
long_long uu;
if (b == 0)
return u;
uu.ll = u;
bm = (sizeof (long) * BITS_PER_UNIT) - b;
if (bm <= 0)
{
w.s.low = 0;
w.s.high = (unsigned long)uu.s.low << -bm;
}
else
{
unsigned long carries = (unsigned long)uu.s.low >> bm;
w.s.low = (unsigned long)uu.s.low << b;
w.s.high = ((unsigned long)uu.s.high << b) | carries;
}
return w.ll;
}
#endif
#ifdef L_lshrdi3
long long
__lshrdi3 (u, b)
long long u;
int b;
{
long_long w;
long bm;
long_long uu;
if (b == 0)
return u;
uu.ll = u;
bm = (sizeof (long) * BITS_PER_UNIT) - b;
if (bm <= 0)
{
w.s.high = 0;
w.s.low = (unsigned long)uu.s.high >> -bm;
}
else
{
unsigned long carries = (unsigned long)uu.s.high << bm;
w.s.high = (unsigned long)uu.s.high >> b;
w.s.low = ((unsigned long)uu.s.low >> b) | carries;
}
return w.ll;
}
#endif
#ifdef L_ashldi3
long long
__ashldi3 (u, b)
long long u;
int b;
{
long_long w;
long bm;
long_long uu;
if (b == 0)
return u;
uu.ll = u;
bm = (sizeof (long) * BITS_PER_UNIT) - b;
if (bm <= 0)
{
w.s.low = 0;
w.s.high = (unsigned long)uu.s.low << -bm;
}
else
{
unsigned long carries = (unsigned long)uu.s.low >> bm;
w.s.low = (unsigned long)uu.s.low << b;
w.s.high = ((unsigned long)uu.s.high << b) | carries;
}
return w.ll;
}
#endif
#ifdef L_ashrdi3
long long
__ashrdi3 (u, b)
long long u;
int b;
{
long_long w;
long bm;
long_long uu;
if (b == 0)
return u;
uu.ll = u;
bm = (sizeof (long) * BITS_PER_UNIT) - b;
if (bm <= 0)
{
/* w.s.high = 1..1 or 0..0 */
w.s.high = uu.s.high >> (sizeof (long) * BITS_PER_UNIT - 1);
w.s.low = uu.s.high >> -bm;
}
else
{
unsigned long carries = (unsigned long)uu.s.high << bm;
w.s.high = uu.s.high >> b;
w.s.low = ((unsigned long)uu.s.low >> b) | carries;
}
return w.ll;
}
#endif
#ifdef L_muldi3
long long
__muldi3 (u, v)
long long u, v;
{
long_long w;
long_long uu, vv;
uu.ll = u,
vv.ll = v;
w.ll = __umulsidi3 (uu.s.low, vv.s.low);
w.s.high += ((unsigned long) uu.s.low * (unsigned long) vv.s.high
+ (unsigned long) uu.s.high * (unsigned long) vv.s.low);
return w.ll;
}
#endif
#ifdef L_udivmoddi4
static const unsigned char __clz_tab[] =
{
0,1,2,2,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,
6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,
7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
};
unsigned long long
__udivmoddi4 (n, d, rp)
unsigned long long n, d;
unsigned long long int *rp;
{
long_long ww;
long_long nn, dd;
long_long rr;
unsigned long d0, d1, n0, n1, n2;
unsigned long q0, q1;
unsigned b, bm;
nn.ll = n;
dd.ll = d;
d0 = dd.s.low;
d1 = dd.s.high;
n0 = nn.s.low;
n1 = nn.s.high;
#if !UDIV_NEEDS_NORMALIZATION
if (d1 == 0)
{
if (d0 > n1)
{
/* 0q = nn / 0D */
udiv_qrnnd (q0, n0, n1, n0, d0);
q1 = 0;
/* Remainder in n0. */
}
else
{
/* qq = NN / 0d */
if (d0 == 0)
d0 = 1 / d0; /* Divide intentionally by zero. */
udiv_qrnnd (q1, n1, 0, n1, d0);
udiv_qrnnd (q0, n0, n1, n0, d0);
/* Remainder in n0. */
}
if (rp != 0)
{
rr.s.low = n0;
rr.s.high = 0;
*rp = rr.ll;
}
}
#else /* UDIV_NEEDS_NORMALIZATION */
if (d1 == 0)
{
if (d0 > n1)
{
/* 0q = nn / 0D */
count_leading_zeros (bm, d0);
if (bm != 0)
{
/* Normalize, i.e. make the most significant bit of the
denominator set. */
d0 = d0 << bm;
n1 = (n1 << bm) | (n0 >> (LONG_TYPE_SIZE - bm));
n0 = n0 << bm;
}
udiv_qrnnd (q0, n0, n1, n0, d0);
q1 = 0;
/* Remainder in n0 >> bm. */
}
else
{
/* qq = NN / 0d */
if (d0 == 0)
d0 = 1 / d0; /* Divide intentionally by zero. */
count_leading_zeros (bm, d0);
if (bm == 0)
{
/* From (n1 >= d0) /\ (the most significant bit of d0 is set),
conclude (the most significant bit of n1 is set) /\ (the
leading quotient digit q1 = 1).
This special case is necessary, not an optimization.
(Shifts counts of LONG_TYPE_SIZE are undefined.) */
n1 -= d0;
q1 = 1;
}
else
{
/* Normalize. */
b = LONG_TYPE_SIZE - bm;
d0 = d0 << bm;
n2 = n1 >> b;
n1 = (n1 << bm) | (n0 >> b);
n0 = n0 << bm;
udiv_qrnnd (q1, n1, n2, n1, d0);
}
/* n1 != d0... */
udiv_qrnnd (q0, n0, n1, n0, d0);
/* Remainder in n0 >> bm. */
}
if (rp != 0)
{
rr.s.low = n0 >> bm;
rr.s.high = 0;
*rp = rr.ll;
}
}
#endif /* UDIV_NEEDS_NORMALIZATION */
else
{
if (d1 > n1)
{
/* 00 = nn / DD */
q0 = 0;
q1 = 0;
/* Remainder in n1n0. */
if (rp != 0)
{
rr.s.low = n0;
rr.s.high = n1;
*rp = rr.ll;
}
}
else
{
/* 0q = NN / dd */
count_leading_zeros (bm, d1);
if (bm == 0)
{
/* From (n1 >= d1) /\ (the most significant bit of d1 is set),
conclude (the most significant bit of n1 is set) /\ (the
quotient digit q0 = 0 or 1).
This special case is necessary, not an optimization. */
/* The condition on the next line takes advantage of that
n1 >= d1 (true due to program flow). */
if (n1 > d1 || n0 >= d0)
{
q0 = 1;
sub_ddmmss (n1, n0, n1, n0, d1, d0);
}
else
q0 = 0;
q1 = 0;
if (rp != 0)
{
rr.s.low = n0;
rr.s.high = n1;
*rp = rr.ll;
}
}
else
{
unsigned long m1, m0;
/* Normalize. */
b = LONG_TYPE_SIZE - bm;
d1 = (d1 << bm) | (d0 >> b);
d0 = d0 << bm;
n2 = n1 >> b;
n1 = (n1 << bm) | (n0 >> b);
n0 = n0 << bm;
udiv_qrnnd (q0, n1, n2, n1, d1);
umul_ppmm (m1, m0, q0, d0);
if (m1 > n1 || (m1 == n1 && m0 > n0))
{
q0--;
sub_ddmmss (m1, m0, m1, m0, d1, d0);
}
q1 = 0;
/* Remainder in (n1n0 - m1m0) >> bm. */
if (rp != 0)
{
sub_ddmmss (n1, n0, n1, n0, m1, m0);
rr.s.low = (n1 << b) | (n0 >> bm);
rr.s.high = n1 >> bm;
*rp = rr.ll;
}
}
}
}
ww.s.low = q0;
ww.s.high = q1;
return ww.ll;
}
#endif
#ifdef L_divdi3
unsigned long long __udivmoddi4 ();
long long
__divdi3 (u, v)
long long u, v;
{
int c = 0;
long_long uu, vv;
long long w;
uu.ll = u;
vv.ll = v;
if (uu.s.high < 0)
c = ~c,
uu.ll = __negdi2 (uu.ll);
if (vv.s.high < 0)
c = ~c,
vv.ll = __negdi2 (vv.ll);
w = __udivmoddi4 (uu.ll, vv.ll, (unsigned long long *) 0);
if (c)
w = __negdi2 (w);
return w;
}
#endif
#ifdef L_moddi3
unsigned long long __udivmoddi4 ();
long long
__moddi3 (u, v)
long long u, v;
{
int c = 0;
long_long uu, vv;
long long w;
uu.ll = u;
vv.ll = v;
if (uu.s.high < 0)
c = ~c,
uu.ll = __negdi2 (uu.ll);
if (vv.s.high < 0)
vv.ll = __negdi2 (vv.ll);
(void) __udivmoddi4 (uu.ll, vv.ll, &w);
if (c)
w = __negdi2 (w);
return w;
}
#endif
#ifdef L_umoddi3
unsigned long long __udivmoddi4 ();
unsigned long long
__umoddi3 (u, v)
unsigned long long u, v;
{
long long w;
(void) __udivmoddi4 (u, v, &w);
return w;
}
#endif
#ifdef L_udivdi3
unsigned long long __udivmoddi4 ();
unsigned long long
__udivdi3 (n, d)
unsigned long long n, d;
{
return __udivmoddi4 (n, d, (unsigned long long *) 0);
}
#endif
#ifdef L_cmpdi2
SItype
__cmpdi2 (a, b)
long long a, b;
{
long_long au, bu;
au.ll = a, bu.ll = b;
if (au.s.high < bu.s.high)
return 0;
else if (au.s.high > bu.s.high)
return 2;
if ((unsigned long) au.s.low < (unsigned long) bu.s.low)
return 0;
else if ((unsigned long) au.s.low > (unsigned long) bu.s.low)
return 2;
return 1;
}
#endif
#ifdef L_ucmpdi2
SItype
__ucmpdi2 (a, b)
long long a, b;
{
long_long au, bu;
au.ll = a, bu.ll = b;
if ((unsigned long) au.s.high < (unsigned long) bu.s.high)
return 0;
else if ((unsigned long) au.s.high > (unsigned long) bu.s.high)
return 2;
if ((unsigned long) au.s.low < (unsigned long) bu.s.low)
return 0;
else if ((unsigned long) au.s.low > (unsigned long) bu.s.low)
return 2;
return 1;
}
#endif
#ifdef L_fixunsdfdi
#define WORD_SIZE (sizeof (long) * BITS_PER_UNIT)
#define HIGH_WORD_COEFF (((long long) 1) << WORD_SIZE)
long long
__fixunsdfdi (a)
double a;
{
double b;
unsigned long long v;
if (a < 0)
return 0;
/* Compute high word of result, as a flonum. */
b = (a / HIGH_WORD_COEFF);
/* Convert that to fixed (but not to long long!),
and shift it into the high word. */
v = (unsigned long int) b;
v <<= WORD_SIZE;
/* Remove high part from the double, leaving the low part as flonum. */
a -= (double)v;
/* Convert that to fixed (but not to long long!) and add it in.
Sometimes A comes out negative. This is significant, since
A has more bits than a long int does. */
if (a < 0)
v -= (unsigned long int) (- a);
else
v += (unsigned long int) a;
return v;
}
#endif
#ifdef L_fixdfdi
long long
__fixdfdi (a)
double a;
{
if (a < 0)
return - __fixunsdfdi (-a);
return __fixunsdfdi (a);
}
#endif
#ifdef L_fixunssfdi
#define WORD_SIZE (sizeof (long) * BITS_PER_UNIT)
#define HIGH_WORD_COEFF (((long long) 1) << WORD_SIZE)
long long
__fixunssfdi (float original_a)
{
/* Convert the float to a double, because that is surely not going
to lose any bits. Some day someone else can write a faster version
that avoids converting to double, and verify it really works right. */
double a = original_a;
double b;
unsigned long long v;
if (a < 0)
return 0;
/* Compute high word of result, as a flonum. */
b = (a / HIGH_WORD_COEFF);
/* Convert that to fixed (but not to long long!),
and shift it into the high word. */
v = (unsigned long int) b;
v <<= WORD_SIZE;
/* Remove high part from the double, leaving the low part as flonum. */
a -= (double)v;
/* Convert that to fixed (but not to long long!) and add it in.
Sometimes A comes out negative. This is significant, since
A has more bits than a long int does. */
if (a < 0)
v -= (unsigned long int) (- a);
else
v += (unsigned long int) a;
return v;
}
#endif
#ifdef L_fixsfdi
long long
__fixsfdi (float a)
{
if (a < 0)
return - __fixunssfdi (-a);
return __fixunssfdi (a);
}
#endif
#ifdef L_floatdidf
#define WORD_SIZE (sizeof (long) * BITS_PER_UNIT)
#define HIGH_HALFWORD_COEFF (((long long) 1) << (WORD_SIZE / 2))
#define HIGH_WORD_COEFF (((long long) 1) << WORD_SIZE)
double
__floatdidf (u)
long long u;
{
double d;
int negate = 0;
if (u < 0)
u = -u, negate = 1;
d = (unsigned int) (u >> WORD_SIZE);
d *= HIGH_HALFWORD_COEFF;
d *= HIGH_HALFWORD_COEFF;
d += (unsigned int) (u & (HIGH_WORD_COEFF - 1));
return (negate ? -d : d);
}
#endif
#ifdef L_floatdisf
#define WORD_SIZE (sizeof (long) * BITS_PER_UNIT)
#define HIGH_HALFWORD_COEFF (((long long) 1) << (WORD_SIZE / 2))
#define HIGH_WORD_COEFF (((long long) 1) << WORD_SIZE)
float
__floatdisf (u)
long long u;
{
float f;
int negate = 0;
if (u < 0)
u = -u, negate = 1;
f = (unsigned int) (u >> WORD_SIZE);
f *= HIGH_HALFWORD_COEFF;
f *= HIGH_HALFWORD_COEFF;
f += (unsigned int) (u & (HIGH_WORD_COEFF - 1));
return (negate ? -f : f);
}
#endif
#ifdef L_fixunsdfsi
#include "limits.h"
unsigned SItype
__fixunsdfsi (a)
double a;
{
if (a >= - (double) LONG_MIN)
return (SItype) (a + LONG_MIN) - LONG_MIN;
return (SItype) a;
}
#endif
#ifdef L_fixunssfsi
#include "limits.h"
unsigned SItype
__fixunssfsi (float a)
{
if (a >= - (float) LONG_MIN)
return (SItype) (a + LONG_MIN) - LONG_MIN;
return (SItype) a;
}
#endif
#ifdef L_varargs
#ifdef __i860__
#ifdef SVR4
asm (" .text");
asm (" .align 4");
asm (".globl __builtin_saveregs");
asm ("__builtin_saveregs:");
asm (" andnot 0x0f,%sp,%sp"); /* round down to 16-byte boundary */
asm (" adds -96,%sp,%sp"); /* allocate stack space for reg save
area and also for a new va_list
structure */
/* Save all argument registers in the arg reg save area. The
arg reg save area must have the following layout (according
to the svr4 ABI):
struct {
union {
float freg[8];
double dreg[4];
} float_regs;
long ireg[12];
};
*/
asm (" fst.q %f8, 0(%sp)"); /* save floating regs (f8-f15) */
asm (" fst.q %f12,16(%sp)");
asm (" st.l %r16,32(%sp)"); /* save integer regs (r16-r27) */
asm (" st.l %r17,36(%sp)");
asm (" st.l %r18,40(%sp)");
asm (" st.l %r19,44(%sp)");
asm (" st.l %r20,48(%sp)");
asm (" st.l %r21,52(%sp)");
asm (" st.l %r22,56(%sp)");
asm (" st.l %r23,60(%sp)");
asm (" st.l %r24,64(%sp)");
asm (" st.l %r25,68(%sp)");
asm (" st.l %r26,72(%sp)");
asm (" st.l %r27,76(%sp)");
asm (" adds 80,%sp,%r16"); /* compute the address of the new
va_list structure. Put in into
r16 so that it will be returned
to the caller. */
/* Initialize all fields of the new va_list structure. This
structure looks like:
typedef struct {
unsigned long ireg_used;
unsigned long freg_used;
long *reg_base;
long *mem_ptr;
} va_list;
*/
asm (" st.l %r0, 0(%r16)"); /* nfixed */
asm (" st.l %r0, 4(%r16)"); /* nfloating */
asm (" st.l %sp, 8(%r16)"); /* __va_ctl points to __va_struct. */
asm (" bri %r1"); /* delayed return */
asm (" st.l %r28,12(%r16)"); /* pointer to overflow args */
#else /* not SVR4 */
asm (" .text");
asm (" .align 4");
asm (".globl ___builtin_saveregs");
asm ("___builtin_saveregs:");
asm (" mov sp,r30");
asm (" andnot 0x0f,sp,sp");
asm (" adds -96,sp,sp"); /* allocate sufficient space on the stack */
/* Fill in the __va_struct. */
asm (" st.l r16, 0(sp)"); /* save integer regs (r16-r27) */
asm (" st.l r17, 4(sp)"); /* int fixed[12] */
asm (" st.l r18, 8(sp)");
asm (" st.l r19,12(sp)");
asm (" st.l r20,16(sp)");
asm (" st.l r21,20(sp)");
asm (" st.l r22,24(sp)");
asm (" st.l r23,28(sp)");
asm (" st.l r24,32(sp)");
asm (" st.l r25,36(sp)");
asm (" st.l r26,40(sp)");
asm (" st.l r27,44(sp)");
asm (" fst.q f8, 48(sp)"); /* save floating regs (f8-f15) */
asm (" fst.q f12,64(sp)"); /* int floating[8] */
/* Fill in the __va_ctl. */
asm (" st.l sp, 80(sp)"); /* __va_ctl points to __va_struct. */
asm (" st.l r28,84(sp)"); /* pointer to more args */
asm (" st.l r0, 88(sp)"); /* nfixed */
asm (" st.l r0, 92(sp)"); /* nfloating */
asm (" adds 80,sp,r16"); /* return address of the __va_ctl. */
asm (" bri r1");
asm (" mov r30,sp");
/* recover stack and pass address to start
of data. */
#endif /* not SVR4 */
#else /* not __i860__ */
#ifdef __sparc__
asm (".global ___builtin_saveregs");
asm ("___builtin_saveregs:");
asm ("st %i0,[%fp+68]");
asm ("st %i1,[%fp+72]");
asm ("st %i2,[%fp+76]");
asm ("st %i3,[%fp+80]");
asm ("st %i4,[%fp+84]");
asm ("retl");
asm ("st %i5,[%fp+88]");
#else /* not __sparc__ */
#if defined(__MIPSEL__) | defined(__R3000__) | defined(__R2000__) | defined(__mips__)
asm (" .text");
asm (" .ent __builtin_saveregs");
asm (" .globl __builtin_saveregs");
asm ("__builtin_saveregs:");
asm (" sw $4,0($30)");
asm (" sw $5,4($30)");
asm (" sw $6,8($30)");
asm (" sw $7,12($30)");
asm (" j $31");
asm (" .end __builtin_saveregs");
#else /* not __mips__, etc. */
__builtin_saveregs ()
{
abort ();
}
#endif /* not __mips__ */
#endif /* not __sparc__ */
#endif /* not __i860__ */
#endif
#ifdef L_eprintf
#undef NULL /* Avoid errors if stdio.h and our stddef.h mismatch. */
#include <stdio.h>
/* This is used by the `assert' macro. */
void
__eprintf (string, expression, line, filename)
char *string;
char *expression;
int line;
char *filename;
{
fprintf (stderr, string, expression, line, filename);
fflush (stderr);
abort ();
}
#endif
#ifdef L_bb
/* Avoid warning from ranlib about empty object file. */
void
__bb_avoid_warning ()
{}
#if defined (__sun__) && defined (__mc68000__)
struct bb
{
int initialized;
char *filename;
int *counts;
int ncounts;
int zero_word;
int *addresses;
};
extern int ___tcov_init;
__bb_init_func (blocks)
struct bb *blocks;
{
if (! ___tcov_init)
___tcov_init_func ();
___bb_link (blocks->filename, blocks->counts, blocks->ncounts);
}
#endif
#endif
/* frills for C++ */
#ifdef L_builtin_new
typedef void (*vfp)(void);
extern vfp __new_handler;
void *
__builtin_new (sz)
long sz;
{
void *p;
p = (void *) malloc (sz);
if (p == 0)
(*__new_handler) ();
return p;
}
#endif
#ifdef L_builtin_New
typedef void (*vfp)(void);
static void default_new_handler ();
vfp __new_handler = default_new_handler;
void *
__builtin_vec_new (p, maxindex, size, ctor)
void *p;
int maxindex, size;
void (*ctor)(void *);
{
int i, nelts = maxindex + 1;
void *rval;
if (p == 0)
p = (void *)__builtin_new (nelts * size);
rval = p;
for (i = 0; i < nelts; i++)
{
(*ctor) (p);
p += size;
}
return rval;
}
vfp
__set_new_handler (handler)
vfp handler;
{
vfp prev_handler;
prev_handler = __new_handler;
if (handler == 0) handler = default_new_handler;
__new_handler = handler;
return prev_handler;
}
vfp
set_new_handler (handler)
vfp handler;
{
return __set_new_handler (handler);
}
static void
default_new_handler ()
{
/* don't use fprintf (stderr, ...) because it may need to call malloc. */
/* This should really print the name of the program, but that is hard to
do. We need a standard, clean way to get at the name. */
write (2, "Virtual memory exceeded in `new'\n", 33);
/* don't call exit () because that may call global destructors which
may cause a loop. */
_exit (-1);
}
#endif
#ifdef L_builtin_del
typedef void (*vfp)(void);
void
__builtin_delete (ptr)
void *ptr;
{
if (ptr)
free (ptr);
}
void
__builtin_vec_delete (ptr, maxindex, size, dtor, auto_delete_vec, auto_delete)
void *ptr;
int maxindex, size;
void (*dtor)();
int auto_delete;
{
int i, nelts = maxindex + 1;
void *p = ptr;
ptr += nelts * size;
for (i = 0; i < nelts; i++)
{
ptr -= size;
(*dtor) (ptr, auto_delete);
}
if (auto_delete_vec)
__builtin_delete (p);
}
#endif
#ifdef L_shtab
unsigned int __shtab[] = {
0x00000001, 0x00000002, 0x00000004, 0x00000008,
0x00000010, 0x00000020, 0x00000040, 0x00000080,
0x00000100, 0x00000200, 0x00000400, 0x00000800,
0x00001000, 0x00002000, 0x00004000, 0x00008000,
0x00010000, 0x00020000, 0x00040000, 0x00080000,
0x00100000, 0x00200000, 0x00400000, 0x00800000,
0x01000000, 0x02000000, 0x04000000, 0x08000000,
0x10000000, 0x20000000, 0x40000000, 0x80000000
};
#endif
#ifdef L_clear_cache
/* Clear part of an instruction cache. */
#define INSN_CACHE_PLANE_SIZE (INSN_CACHE_SIZE / INSN_CACHE_DEPTH)
void
__clear_cache (beg, end)
char *beg, *end;
{
#ifdef INSN_CACHE_SIZE
static char array[INSN_CACHE_SIZE + INSN_CACHE_PLANE_SIZE + INSN_CACHE_LINE_WIDTH];
static int initialized = 0;
int offset;
unsigned int start_addr, end_addr;
typedef (*function_ptr) ();
#if (INSN_CACHE_SIZE / INSN_CACHE_LINE_WIDTH) < 16
/* It's cheaper to clear the whole cache.
Put in a series of jump instructions so that calling the beginning
of the cache will clear the whole thing. */
if (! initialized)
{
int ptr = (((int) array + INSN_CACHE_LINE_WIDTH - 1)
& -INSN_CACHE_LINE_WIDTH);
int end_ptr = ptr + INSN_CACHE_SIZE;
while (ptr < end_ptr)
{
*(INSTRUCTION_TYPE *)ptr
= JUMP_AHEAD_INSTRUCTION + INSN_CACHE_LINE_WIDTH;
ptr += INSN_CACHE_LINE_WIDTH;
}
*(INSTRUCTION_TYPE *)(ptr - INSN_CACHE_LINE_WIDTH) = RETURN_INSTRUCTION;
initialized = 1;
}
/* Call the beginning of the sequence. */
(((function_ptr) (((int) array + INSN_CACHE_LINE_WIDTH - 1)
& -INSN_CACHE_LINE_WIDTH))
());
#else /* Cache is large. */
if (! initialized)
{
int ptr = (((int) array + INSN_CACHE_LINE_WIDTH - 1)
& -INSN_CACHE_LINE_WIDTH);
while (ptr < (int) array + sizeof array)
{
*(INSTRUCTION_TYPE *)ptr = RETURN_INSTRUCTION;
ptr += INSN_CACHE_LINE_WIDTH;
}
initialized = 1;
}
/* Find the location in array that occupies the same cache line as BEG. */
offset = ((int) beg & -INSN_CACHE_LINE_WIDTH) & (INSN_CACHE_PLANE_SIZE - 1);
start_addr = (((int) (array + INSN_CACHE_PLANE_SIZE - 1)
& -INSN_CACHE_PLANE_SIZE)
+ offset);
/* Compute the cache alignment of the place to stop clearing. */
#if 0 /* This is not needed for gcc's purposes. */
/* If the block to clear is bigger than a cache plane,
we clear the entire cache, and OFFSET is already correct. */
if (end < beg + INSN_CACHE_PLANE_SIZE)
#endif
offset = (((int) (end + INSN_CACHE_LINE_WIDTH - 1)
& -INSN_CACHE_LINE_WIDTH)
& (INSN_CACHE_PLANE_SIZE - 1));
#if INSN_CACHE_DEPTH > 1
end_addr = (start_addr & -INSN_CACHE_PLANE_SIZE) + offset;
if (end_addr <= start_addr)
end_addr += INSN_CACHE_PLANE_SIZE;
for (plane = 0; plane < INSN_CACHE_DEPTH; plane++)
{
int addr = start_addr + plane * INSN_CACHE_PLANE_SIZE;
int stop = end_addr + plane * INSN_CACHE_PLANE_SIZE;
while (addr != stop)
{
/* Call the return instruction at ADDR. */
((function_ptr) addr) ();
addr += INSN_CACHE_LINE_WIDTH;
}
}
#else /* just one plane */
do
{
/* Call the return instruction at START_ADDR. */
((function_ptr) start_addr) ();
start_addr += INSN_CACHE_LINE_WIDTH;
}
while ((start_addr % INSN_CACHE_SIZE) != offset);
#endif /* just one plane */
#endif /* Cache is large */
#endif /* Cache exists */
}
#endif /* L_clear_cache */
#ifdef L_trampoline
/* Jump to a trampoline, loading the static chain address. */
#ifdef TRANSFER_FROM_TRAMPOLINE
TRANSFER_FROM_TRAMPOLINE
#endif
#ifdef __convex__
/* Make stack executable so we can call trampolines on stack.
This is called from INITIALIZE_TRAMPOLINE in convex.h. */
#include <sys/mman.h>
#include <sys/vmparam.h>
#include <machine/machparam.h>
void
__enable_execute_stack ()
{
int fp;
static unsigned lowest = USRSTACK;
unsigned current = (unsigned) &fp & -NBPG;
if (lowest > current)
{
unsigned len = lowest - current;
mremap (current, &len, PROT_READ | PROT_WRITE | PROT_EXEC, MAP_PRIVATE);
lowest = current;
}
/* Clear instruction cache in case an old trampoline is in it. */
asm ("pich");
}
#endif /* __convex__ */
#endif /* L_trampoline */
#ifdef L__main
#include "gbl-ctors.h"
/* Run all the global destructors on exit from the program. */
void
__do_global_dtors ()
{
#ifdef DO_GLOBAL_DTORS_BODY
DO_GLOBAL_DTORS_BODY;
#else
int nptrs = *(int *)__DTOR_LIST__;
int i;
/* Some systems place the number of pointers
in the first word of the table.
On other systems, that word is -1.
In all cases, the table is null-terminated. */
/* If the length is not recorded, count up to the null. */
if (nptrs == -1)
for (nptrs = 0; __DTOR_LIST__[nptrs + 1] != 0; nptrs++);
/* GNU LD format. */
for (i = nptrs; i >= 1; i--)
__DTOR_LIST__[i] ();
#endif
}
#ifndef INIT_SECTION_ASM_OP
/* Run all the global constructors on entry to the program. */
#ifndef ON_EXIT
#define ON_EXIT(a, b)
#else
/* Make sure the exit routine is pulled in to define the globals as
bss symbols, just in case the linker does not automatically pull
bss definitions from the library. */
extern int _exit_dummy_decl;
int *_exit_dummy_ref = &_exit_dummy_decl;
#endif /* ON_EXIT */
void
__do_global_ctors ()
{
DO_GLOBAL_CTORS_BODY;
ON_EXIT (__do_global_dtors, 0);
}
/* Subroutine called automatically by `main'.
Compiling a global function named `main'
produces an automatic call to this function at the beginning.
For many systems, this routine calls __do_global_ctors.
For systems which support a .init section we use the .init section
to run __do_global_ctors, so we need not do anything here. */
void
__main ()
{
/* Support recursive calls to `main': run initializers just once. */
static initialized = 0;
if (! initialized)
{
initialized = 1;
__do_global_ctors ();
}
}
#endif /* no INIT_SECTION_ASM_OP */
#endif /* L__main */
#ifdef L_exit
#include "gbl-ctors.h"
/* Provide default definitions for the lists of constructors and
destructors, so that we don't get linker errors. These symbols are
intentionally bss symbols, so that gld and/or collect will provide
the right values. */
/* We declare the lists here with two elements each,
so that they are valid empty lists if no other definition is loaded. */
#ifndef INIT_SECTION_ASM_OP
func_ptr __CTOR_LIST__[2];
func_ptr __DTOR_LIST__[2];
#endif /* INIT_SECTION_ASM_OP */
#ifndef ON_EXIT
/* If we have no known way of registering our own __do_global_dtors
routine so that it will be invoked at program exit time, then we
have to define our own exit routine which will get this to happen. */
extern void __do_global_dtors ();
extern void _cleanup ();
extern void _exit () __attribute__ ((noreturn));
void
exit (status)
int status;
{
__do_global_dtors ();
#ifdef EXIT_BODY
EXIT_BODY;
#else
_cleanup ();
#endif
_exit (status);
}
#else
int _exit_dummy_decl = 0; /* prevent compiler & linker warnings */
#endif
#endif /* L_exit */
/* In a.out systems, we need to have these dummy constructor and destructor
lists in the library.
When using `collect', the first link will resolve __CTOR_LIST__
and __DTOR_LIST__ to these symbols. We will then run "nm" on the
result, build the correct __CTOR_LIST__ and __DTOR_LIST__, and relink.
Since we don't do the second link if no constructors existed, these
dummies must be fully functional empty lists.
When using `gnu ld', these symbols will be used if there are no
constructors. If there are constructors, the N_SETV symbol defined
by the linker from the N_SETT's in input files will define __CTOR_LIST__
and __DTOR_LIST__ rather than its being allocated as common storage
by the definitions below.
When using a linker that supports constructor and destructor segments,
these definitions will not be used, since crtbegin.o and crtend.o
(from crtstuff.c) will have already defined __CTOR_LIST__ and
__DTOR_LIST__. The crt*.o files are passed directly to the linker
on its command line, by gcc. */
/* The list needs two elements: one is ignored (the old count); the
second is the terminating zero. Since both values are zero, this
declaration is not initialized, and it becomes `common'. */
#ifdef L_ctor_list
#include "gbl-ctors.h"
func_ptr __CTOR_LIST__[2];
#endif
#ifdef L_dtor_list
#include "gbl-ctors.h"
func_ptr __DTOR_LIST__[2];
#endif